Design immersive virtual reality (IVR) with cognitive conflict to support practical learning of quantum physics
DOI:
https://doi.org/10.36681/Keywords:
Cognitive conflict, immersive virtual reality, quantum physicsAbstract
This research aims to design immersive virtual reality with cognitive conflict to support practical learning of quantum physics. This type of research is design research through the stages of needs analysis, product design, validity test, and practicality test. The needs analysis used questionnaire sheets distributed with Google Forms and obtained from 97 students. Immersive virtual reality design was developed by utilizing the Blender and Unity applications in the form of Android Package Kit (APK) format installed on virtual reality devices. The validity test involved six experts using validity instruments, and the practicality test involved nine students using practicality instruments. The validity test results on the learning and material indicators obtained a value of 0.89 in the valid category. A validity value of 0.95 was obtained in the valid category of the media aspect indicator. The average overall practicality score of the ease of use, display, design efficiency, and benefits indicators was 92 in the very practical category. The novelty of these research results is that they combine immersive virtual reality with cognitive conflict models applied to quantum physics learning that have been tested to be valid and practical.
Downloads
References
Abichandani, P., McIntyre, W., Fligor, W., & Lobo, D. (2019). Solar energy education through a cloud-based desktop virtual reality system. IEEE Access, 7, 147081–147093. https://doi.org/10.1109/ACCESS.2019.2945700
Aini, S., & Mufit, F. (2022). Using adobe animate cc software in designing ınteractive multimedia based on cognitive conflict in straight motion. Jurnal Penelitian Pendidikan IPA, 8(5), 2350–2361. https://doi.org/10.29303/jppipa.v8i5.2048
Akman, E., & Cakır, R. (2019). Pupils’ opinions on an educational virtual reality game in terms of flow
experience. International Journal of Emerging Technologies in Learning (IJET), 14(15 SE-Papers), 121–
https://doi.org/10.3991/ijet.v14i15.10576
Al-Khassawneh, Y. A. (2023). A review of artificial ıntelligence in security and privacy: research
advances, applications, opportunities, and challenges. Indonesian Journal of Science and Technology,
(1), 79–96. https://doi.org/10.17509%2Fijost.v8i1.52709
Albus, P., Vogt, A., & Seufert, T. (2021). Signaling in virtual reality influences learning outcome and
cognitive load. Computers & Education, 166, 104154.
https://doi.org/10.1016/j.compedu.2021.104154
Ansari, S. Z. A., Shukla, V. K., Saxena, K., & Filomeno, B. (2022). Implementing virtual reality in
entertainment ındustry. Cyber Intelligence and Information Retrieval: Proceedings of CIIR 2021, 561–
https://doi.org/10.21184/jkeia.2018.2.12.2.1
Araiza-Alba, P., Keane, T., Chen, W. S., & Kaufman, J. (2021). Immersive virtual reality as a tool to
learn problem-solving skills. Computers & Education, 164, 104121.
https://doi.org/10.1016/j.compedu.2020.104121
Arikunto, S. (2013). Prosedur penelitian suatu pendekatan praktik (research procedure: a practical approach).
Arslan, R., Kofoğlu, M., & Dargut, C. (2020). Development of augmented reality application for
biology education. Journal of Turkish Science Education, 17(1), 62–72.
https://doi.org/10.36681/tused.2020.13
Atmam, P. L., & Mufit, F. (2023). Using adobe animated cc in designing ınteractive multimedia based
on cognitive conflict on parabolic motion materials. JIPF (Jurnal Ilmu Pendidikan Fisika), 8(1), 64–
https://doi.org/10.29303/jppipa.v8i5.2048
Azma, N., Cahyono, E., & Nuswowati, M. (2022). Effectiveness of online learning sssisted by labs
virtual laboratorium in ımproving students’ science process skills. International Journal of Active
Learning, 7(1), 86–93.
Barteit, S., Lanfermann, L., Bärnighausen, T., Neuhann, F., & Beiersmann, C. (2021). Augmented,
mixed, and virtual reality-based head-mounted devices for medical education: systematic
review. JMIR Serious Games, 9(3), e29080. https://doi.org/10.2196/29080
Budi, L., Widodo, A., Julianto, E. N., Dermawan, M. H., Mayasari, R., Chonora, A., Soraya, A. N., &
Ardiansah, R. (2023). Development of ınteractive e-module based on video and augmented
reality for earthquake technology course. Jurnal Pendidikan Teknologi Kejuruan, 6(3), 179–189.
https://doi.org/10.24036/jptk.v6i3.33623
Cappannari, L., & Vitillo, A. (2022). XR and metaverse software platforms. In Roadmapping Extended
Reality: Fundamentals and Applications (pp. 135–156). Wiley Online Library.
https://doi.org/10.1002/9781119865810.ch6
Chang, X., Zhang, D., & Jin, X. (2016). Application of virtual reality technology in distance learning.
International Journal of Emerging Technologies in Learning, 11(11).
https://doi.org/10.3991/ijet.v13i04.8472
Coiffet, P., & Burdea, G. C. (2017). Virtual reality technology. John Wiley & Sons.
Dhanil, M., & Mufit, F. (2021). Design and validity of ınteractive multimedia based on cognitive
conflict on static fluid using adobe animate cc 2019. Jurnal Penelitian & Pengembangan Pendidikan
Fisika, 7(2), 177–190. https://doi.org/10.21009/1.07210
Di Natale, A. F., Repetto, C., Riva, G., & Villani, D. (2020). Immersive virtual reality in k‐12 and
higher education: a 10‐year systematic review of empirical research. British Journal of
Educational Technology, 51(6), 2006–2033. https://doi.org/10.1111/bjet.13030
Dinis, F. M., Guimaraes, A. S., Carvalho, B. R., & Martins, J. P. P. (2017). Development of virtual reality
game-based interfaces for civil engineering education. 2017 IEEE Global Engineering Education
Conference (EDUCON), 1195–1202.
Dwinggo Samala, A., Usmeldi, T. A., Bojić, L., Indarta, Y., Tsoy, D., Denden, M., Tas, N., & Parma
Dewi, I. (2023). Metaverse technologies in education: a systematic literature review using
PRISMA. International Journal of Emerging Technologies in Learning (IJET), 18(5).
https://doi.org/10.3991/ijet.v18i05.35501
Elmqaddem, N. (2019). Augmented reality and virtual reality in education. myth or reality?
International Journal of Emerging Technologies in Learning, 14(3).
Festiyed, Novitra, F., Yohandri, & Asrizal. (2022). Networked-based ınquiry: an effective physics
learning in the new normal COVID-19 era in ındonesia. International Journal of Instruction, 15(2),
–1016. https://doi.org/10.29333/iji.2022.15255a
Fombona-Pascual, A., Fombona, J., & Vázquez-Cano, E. (2022). VR in chemistry, a review of scientific
research on advanced atomic/molecular visualization. Chemistry Education Research and Practice,
(2), 300–312. https://doi.org/10.1039/d1rp00317h
Fortuna, A., Kurniawan, A., Andriani, W., & Alimin, M. (2023). Designing learning media using
augmented reality for engineering mechanics course. Journal of Engineering Researcher and
Lecturer, 2(1), 18–27. https://doi.org/10.58712/jerel.v2i1.20
George-Williams, S., Pullen, R., & Schmid, and S. (2020). Virtual reality, help or hindrance? a case
study of two undergraduate student-generated chemistry lessons. International Journal of
Innovation in Science and Mathematics Education, 28(2), 16–27.
https://doi.org/10.30722/IJISME.28.02.002
Gonz, M. (2020). Education sciences ımplications of virtual reality in arts education : research analysis in the
context of higher education.
Kemendikbud. (2010). Panduan pengembangan bahan ajar berbasis TIK. In Jakarta. Direktorat
Pembinaan SMA.
Kugurakova, V. V., Golovanova, I. I., Shaidullina, A. R., Khairullina, E. R., & Orekhovskaya, N. A.
(2021). Digital solutions in educators’ training: concept for ımplementing a virtual reality
simulator. Eurasia Journal of Mathematics, Science and Technology Education, 17(9), 1–10.
https://doi.org/10.29333/ejmste/11174
LaValle, S. M. (2023). Virtual reality. Cambridge university press.
Liu, D. (2017). Virtual, augmented, and mixed realities in educa- tion. smart computing and
intelligence, the potentials and trends of virtual reality in education. In Springer (Vol. 23, Issue 5).
https://doi.org/10.4324/9781003103943-3
Mäkinen, H., Haavisto, E., Havola, S., & Koivisto, J.-M. (2022). User experiences of virtual reality
technologies for healthcare in learning: an ıntegrative review. Behaviour & Information Technology,
(1), 1–17. https://doi.org/10.1080/0144929x.2020.1788162
Maksimenko, N., Okolzina, A., Vlasova, A., Tracey, C., & Kurushkin, M. (2021). Introducing atomic
structure to first-year undergraduate chemistry students with an ımmersive virtual reality experience.
ACS Publications.
Marougkas, A., Troussas, C., Krouska, A., & Sgouropoulou, C. (2023). Virtual reality in education: a
review of learning theories, approaches and methodologies for the last decade. Electronics, 12(13),
https://doi.org/10.3390/electronics12132832
Marougkas, A., Troussas, C., Krouska, A., & Sgouropoulou, C. (2024). How personalized and effective
ıs ımmersive virtual reality in education? a systematic literature review for the last decade.
Multimedia Tools and Applications, 83(6), 18185–18233. https://doi.org/10.1007/s11042-023-15986-7
Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2022). A literature review of the challenges and
opportunities of the transition from ındustry 4.0 to society 5.0. Energies, 15(17), 6276.
https://doi.org/10.3390/en15176276
Mufit, F., Asrizal, A., & Puspitasari, R. (2020). Meta-analysis of the effect of cognitive conflict on
physics learning. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 6(2), 267–278. https://doi.org/10.21009/1.06213
Mufit, F., Asrizal, A., Puspitasari, R., & Annisa, A. (2022). Cognitive conflict-based e-book with real
experiment video analysis ıntegration to enhance conceptual understanding of motion
kinematics. Jurnal Pendidikan IPA Indonesia, 11(4). https://doi.org/10.15294/jpii.v11i4.39333
Mufit, F., Asrizal, Hanum, S. A., & Fadhilah, A. (2020). Preliminary research in the development of
physics teaching materials that integrate new literacy and disaster literacy. Journal of Physics:
Conference Series, 1481(1), 012041. https://doi.org/10.1088/1742-6596/1481/1/012041
Mufit, F., & Fauzan, A. (2019). Model pembelajaran berbasis konflik kognitif. CV IRDH.
Mufit, F., Festiyed, F., Fauzan, A., & Lufri, L. (2018). Impact of learning model based on cognitive
conflict toward student’s conceptual understanding. IOP Conference Series: Materials Science and
Engineering, 335(1). https://doi.org/10.1088/1757-899X/335/1/012072
Mufit, F., Festiyed, Fauzan, A., & Lufri. (2019). The application of real experiments video analysis in
the CCBL model to remediate the misconceptions about motion’s concept. Journal of Physics:
Conference Series, 1317(1). https://doi.org/10.1088/1742-6596/1317/1/012156
Mufit, F., Festiyed, Fauzan, A., & Lufri. (2023). The effect of cognitive conflict-based learning (CCBL)
model on remediation of misconceptions. Journal of Turkish Science Education, 20(1), 26–49.
https://doi.org/10.36681/tused.2023.003
Mufit, F., & Fitri, A. D. (2022). The analysis of experiment video on cognitive conflict-based teaching
materials to enhance momentum-ımpulse concepts understanding. Jurnal Penelitian &
Pengembangan Pendidikan Fisika, 8(2), 293–304. https://doi.org/10.21009/1.08211
Mufit, F., Hendriyani, Y., & Dhanil, M. (2023). Augmented reality dan virtual reality berbasis konflik
kognitif,sebagai media pembelajaran abad ke-21 (Augmented reality and virtual reality based on cognitive
conflict, as 21st century learning media). Rajawali Pers.
Mufit, F., Hendriyani, Y., Usmeldi, M. D., & Tanjung, M. R. (2023). The Effectiveness of SmartphoneBased Interactive Multimedia Integrated Cognitive Conflict Models to Improve 21st-Century
Skills. International Journal of Information and Education Technology, 13(11).
https://doi.org/10.18178/ijiet.2023.13.11.1991
Nadan, T., Alexandrov, V., Jamieson, R., & Watson, K. (2011). Is virtual reality a memorable
experience in an educational context? International Journal of Emerging Technologies in Learning
(IJET), 6(1), 53–57. https://doi.org/10.3991/ijet.v6i1.1433
Nair, M. M., Tyagi, A. K., & Sreenath, N. (2021). The future with ındustry 4.0 at the core of society 5.0:
open ıssues, future opportunities and challenges. 2021 International Conference on Computer
Communication and Informatics (ICCCI), 1–7. https://doi.org/10.1109/iccci50826.2021.9402498
Noer, F., & Mufit, F. (2023). Design of teaching materials of physics based on cognitive conflict
ıntegrated by virtual laboratory on quantum phenomenon. PILLAR OF PHYSICS EDUCATION,
(3).
Novitra, F. (2021). Development of online-based ınquiry learning model to ımprove 21st-century skills
of physics students in senior high school. EURASIA Journal of Mathematics, Science and Technology
Education, 17(9). https://doi.org/10.29333/ejmste/11152
Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational
Psychology, 110(6), 785.
Paszkiewicz, A., Salach, M., Dymora, P., Bolanowski, M., Budzik, G., & Kubiak, P. (2021).
Methodology of implementing virtual reality in education for industry 4.0. Sustainability, 13(9),
Patel, S., Panchotiya, B., & Ribadiya, S. A. (2020). Survey: virtual, augmented and mixed reality in
education. IJERT, 9, 1067–1072.
Plomp, T. (2013). Educational design research: an introduction. In Netherlands institute for curriculum
development.
Prahani, B. K., Saphira, H. V., Wibowo, F. C., Misbah, M., & Sulaeman, N. F. (2022). Trend and visualization of virtual reality & augmented reality in physics learning from 2002-2021. Journal of
Turkish Science Education, 19(4), 1096–1118. https://doi.org/10.36681/tused.2022.164
Prasetya, F., Fajri, B. R., Wulansari, R. E., & Fortuna, A. (2023). Virtual reality adventures as an effort
to ımprove the quality of welding technology learning during a pandemic. International Journal of
Online & Biomedical Engineering, 19(2). https://doi.org/10.3991/ijoe.v19i02.35447
Price, C., & Mohr, R. (2019). PhysLab: a 3D virtual physics laboratory of simulated experiments for
advanced physics learning. Physics Education, 54(3), 35006. https://doi.org/10.1088/1361-
/ab0005
Puspitasari, R., Mufit, F., & Asrizal. (2021). Conditions of learning physics and students’
understanding of the concept of motion during the covid-19 pandemic. Journal of Physics:
Conference Series, 1876(1). https://doi.org/10.1088/1742-6596/1876/1/012045
Raja, M., & Priya, G. G. (2021a). Conceptual origins, technological advancements, and ımpacts of using
virtual reality technology in education. Webology, 18(2).
https://doi.org/10.14704/web/v18i2/web18311
Raja, M., & Priya, L. (2021b). An analysis of virtual reality usage through a descriptive research
analysis on school students’ experiences: a study from ındia. International Journal of Early
Childhood Special Education, 13(2). https://doi.org/10.9756/int-jecse/v13i2.211142
Rani, S. A., & Dwandaru, W. S. B. (2019). Physics virtual laboratory: an innovative media in 21st
century learning. Journal of Physics: Conference Series, 1321(2), 22026.
Ros, M., Debien, B., Cyteval, C., Molinari, N., Gatto, F., & Lonjon, N. (2020). Applying an immersive
tutorial in virtual reality to learning a new technique. Neurochirurgie, 66(4), 212–218.
https://doi.org/10.1016/j.neuchi.2020.05.006
Samala, Agariadne Dwinggo Dewi, I. P., & Mursyida, L. (2023). E-LabSheet Project” 4Cs-based
supplementary media for flexible learning: ıs it well ımplemented? International Journal of Online
and Biomedical Engineering (IJOE), 19(1), 4–20. https://doi.org/10.3991/ijoe.v19i01.35523
Samala, A. D., Daineko, Y., Indarta, Y., Nando, Y. A., Anwar, M., & Jaya, P. (2023). Global publication
trends in augmented reality and virtual reality for learning: the last twenty-one years.
International Journal of Engineering Pedagogy, 13(2). https://doi.org/10.3991/ijep.v13i2.35965
Saputri, R., Mufit, F., Gusnedi, G., & Sari, S. Y. (2021). Design and validity of cognitive conflict-based
teaching materials integrating virtual laboratories to improve concept understanding of waves.
Berkala Ilmiah Pendidikan Fisika, 9(3), 244–256. https://doi.org/10.20527/bipf.v9i3.10348
Schultz, L. (2005). Effects of graphical elements on perceived usefulness of a library. Retrieved August,
, 2016.
Sherman, W. R., & Craig, A. B. (2018). Understanding virtual reality: Interface, application, and
design. In Morgan Kaufmann.
Shi, F., Ning, H., Zhang, X., Li, R., Tian, Q., Zhang, S., Zheng, Y., Guo, Y., & Daneshmand, M. (2023). A
new technology perspective of the metaverse: ıts essence, framework and challenges. Digital
Communications and Networks. https://doi.org/10.1016/j.dcan.2023.02.017
Šiđanin, P., Plavšić, J., Arsenić, I., & Krmar, M. (2020). Virtual reality (vr) simulation of a nuclear
physics laboratory exercise. European Journal of Physics, 41(6), 65802. https://doi.org/10.1088/1361-
/ab9c90
Soliman, M., Pesyridis, A., Dalaymani-Zad, D., Gronfula, M., & Kourmpetis, M. (2021). The
application of virtual reality in engineering education. Applied Sciences, 11(6), 2879.
https://doi.org/10.1109/vr.2004.1310077
Supena, I., Darmuki, A., & Hariyadi, A. (2021). The Influence of 4C (constructive, critical, creativity,
collaborative) learning model on students’ learning outcomes. International Journal of Instruction,
(3), 873–892. https://doi.org/10.29333/iji.2021.14351a
Suyatna, A., Ertikanto, C., Herlina, K., & Pradana, F. A. (2019). The effectiveness of ınteractive e-book
quantum phenomena compiled with scientific approach in ımproving higher order thinking
skills. Journal of Physics: Conference Series, 1157(3), 32028. https://doi.org/10.24036/10354171074
Tarasewich, P. (2003). Wireless device for mobile commerce: User interface design and usability. ın
mobile commerce: technology, theory and applications (pp. 26–50). IGI Global.
https://doi.org/10.4018/978-1-59140-044-8.ch002
Tractinsky, N. (2004). Toward the study of aesthetics in information technology.
Xie, B., Liu, H., Alghofaili, R., Zhang, Y., Jiang, Y., Lobo, F. D., Li, C., Li, W., Huang, H., & Akdere, M.
(2021). A review on virtual reality skill training applications. Frontiers in Virtual Reality, 2, 645153.
Downloads
Issue
Section
Published
License
Copyright (c) 2024 Journal of Turkish Science Education
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.