Supporting eighth-grade pupils’ understanding of hydrostatic pressure with inquiry-based activities

Authors

DOI:

https://doi.org/10.36681/tused.2025.034

Keywords:

Educational design research, hydrostatic pressure, inquiry-based activities, learning trajectory

Abstract

This study aims to facilitate and implement inquiry-based exercises in the domain of hydrostatic pressure within the subject of physics education. The design research method was used to support eighth-grade pupils at Palembang State Middle School by developing inquiry-based activities on hydrostatic pressure. Three stages–experimental preparation, classroom experiments (pilot experiments and teaching experiments, and retrospective analysis–were carried out to formulate pupil learning trajectories. Pupils were expected to form the hypothesis that the dam walls are designed to increase the thickness of deeper wall or dam. They then created and conducted an experiment using appropriate tools and materials. The data collected were graphed and the graph was used to determine whether the hypothesis had been proven true. Finally, pupils applied their understanding of hydrostatic pressure and to given problems. Findings demonstrated significant improvements in pupils' conceptual understanding, experimental skills, and problem-solving abilities. Generally, students were able to accurately describe the relationship between hydrostatic pressure and the depth and density of the liquid, as evidenced by their correct interpretation of experimental data and graphical representations. The results also can be used to implement inquiry-based activities with a broader planned learning trajectory, and as a pioneer of further research across different learning contexts.

Downloads

Download data is not yet available.

Author Biography

  • Ismet Ismet, Sriwijaya University

    Physics Education department

References

Anam, C. A., & Edie, S. S. (2015). Penerapan strategi POE (predict-observe-explain) untuk memperbaiki miskonsepsi fisika pada sub pokok bahasan arus dan tegangan listrik bagi peserta didik kelas X SMA Teuku Umar Semarang. Unnes Physics Education Journal, 4(2), 25–31. https://doi.org/10.15294/upej.v4i2.7430

Antonio, R. P., & Prudente, M. S. (2021). Metacognitive argument-driven ınquiry in teaching antimicrobial resistance: Effects on students’ conceptual understanding and argumentation skills. Journal of Turkish Science Education, 18(2), 192-217. https://doi.org/10.36681/tused.2021.60 DOI: https://doi.org/10.36681/tused.2021.60

Pratiwi, A., Fisika, W. J., Matematika, F., Ilmu, D., & Alam, P. (2013). Pembelajaran dengan praktikum sederhana untuk mereduksi miskonsepsi siswa pada materi fluida statis di kelas I SMA Negeri 2 Tuban. Jurnal Inovasi Pendidikan Fisika, 2(3), 117–120.

Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: Models, tools, and challenges. International Journal of Science Education, 32(3), 349–377. https://doi.org/10.1080/09500690802582241 DOI: https://doi.org/10.1080/09500690802582241

Berek, F. X., Sutopo, S., & Munzil. (2016). Concept enhancement of junior high school students in hydrostatic pressure and Archimedes' law by predict-observe-explain strategy. Jurnal Pendidikan IPA Indonesia, 5(2), 230–238. https://doi.org/10.15294/jpii.v5i2.6038

Berhanu, M., & Sheferaw, H. (2020). The effectiveness of guided inquiry-based learning strategy on learning physical and chemical changes. African Journal of Chemical Education, 12(2), 149–185.

Çepni, S., Şahin, Ç., & Hava, İ. (2010). Teaching floating and sinking concepts with different methods and techniques based on the 5E instructional model. Asia-Pacific Forum on Science Learning and Teaching, 11(2), 1–39.

Chen, Y., Irving, P. W., & Sayre, E. C. (2013). Epistemic game for answer making in learning about hydrostatics. Physical Review Special Topics - Physics Education Research, 9(1), 1–7. https://doi.org/10.1103/PhysRevSTPER.9.010108 DOI: https://doi.org/10.1103/PhysRevSTPER.9.010108

Wenning, C. J. (2011). Experimental inquiry in introductory physics courses. Journal of Physics Teacher Education Online, 6(2), 2–8.

De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201. https://doi.org/10.3102/00346543068002179 DOI: https://doi.org/10.3102/00346543068002179

Dewi, F. H., Samsudin, A., & Nugraha, M. G. (2019). An investigation of students’ conceptual understanding levels on fluid dynamics using four-tier test. Journal of Physics: Conference Series, 1280(5), 1–8. https://doi.org/10.1088/1742-6596/1280/5/052037 DOI: https://doi.org/10.1088/1742-6596/1280/5/052037

Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics - Physics Education Research, 10(2), 1–58. https://doi.org/10.1103/PhysRevSTPER.10.020119 DOI: https://doi.org/10.1103/PhysRevSTPER.10.020119

Donkor Taale, K. (2011). Improving physics problem-solving skills of students of Somanya Senior High Secondary Technical School in the Yilo Krobo District of Eastern Region of Ghana. Journal of Education and Practice, 2(6), 8–21.

Frågåt, T., Henriksen, E. K., & Tellefsen, C. W. (2021). Pre-service science teachers’ and in-service physics teachers’ views on the knowledge and skills of a good teacher. Nordic Studies in Science Education, 17(3), 277–292. https://doi.org/10.5617/nordina.7644 DOI: https://doi.org/10.5617/nordina.7644

Goszewski, M., Moyer, A., Bazan, Z., & Wagner, D. J. (2013). Exploring student difficulties with pressure in a fluid. Physics Education Research Conference Proceedings (pp. 154–157). https://doi.org/10.1063/1.4789675 DOI: https://doi.org/10.1063/1.4789675

Gravemeijer, K. (2004). Local instructional theories as means of support for teachers in reform mathematics education. Mathematical Thinking and Learning, 6(2), 105–128. https://doi.org/10.1207/s15327833mtl0602_3 DOI: https://doi.org/10.1207/s15327833mtl0602_3

Hakim, A., Liliasari, Kadarohman, A., & Syah, Y. M. (2016). Effects of the natural product mini project laboratory on the students conceptual understanding. Journal of Turkish Science Education, 13(2), 27-36. https://doi.org/10.36681

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107. https://doi.org/10.1080/00461520701263368 DOI: https://doi.org/10.1080/00461520701263368

Gravemeijer, K., & Cobb, P. (2006). Educational design research. Routledge.

Jauhariyah, M. N. R., Zaitul, Z., & Indina, M. (2018). Learn physics using interactive demonstration to reduce the students’ misconceptions on mechanical wave. [Paper presentation]. In Mathematics, Informatics, Science, and Education International Conference (MISEIC 2018) (pp. 345–351). Atlantis Press. https://doi.org/10.2991/miseic-18.2018.59 DOI: https://doi.org/10.2991/miseic-18.2018.59

Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898–921. https://doi.org/10.1002/tea.10115 DOI: https://doi.org/10.1002/tea.10115

Kim, G., Kim, D., Ahn, Y., & Huh, K. (2021). Hybrid approach for vehicle trajectory prediction using weighted integration of multiple models. IEEE Access, 9(4), 78715–78723. https://doi.org/10.1109/ACCESS.2021.3083918 DOI: https://doi.org/10.1109/ACCESS.2021.3083918

Loverude, M. E., Kautz, C. H., & Heron, P. R. L. (2003). Helping students develop an understanding of Archimedes’ principle: I. Research on student understanding. American Journal of Physics, 71(11), 1178–1187. https://doi.org/10.1119/1.1607335 DOI: https://doi.org/10.1119/1.1607335

Maknun, J. (2020). Implementation of guided inquiry learning model to improve understanding physics concepts and critical thinking skill of vocational high school students. International Education Studies, 13(6), 117-130. https://doi.org/10.5539/ies.v13n6p117 DOI: https://doi.org/10.5539/ies.v13n6p117

McDermott, L. C. (1984). Research on conceptual understanding in mechanics. Physics Today, 37(7), 24–32. https://doi.org/10.1063/1.2916318 DOI: https://doi.org/10.1063/1.2916318

Murphy, C., Abu-Tineh, A., Calder, N., & Mansour, N. (2018). Implementing dialogic inquiry in Qatari mathematics and science classrooms: Challenges and provocations. Teachers and Curriculum, 18(1). 33-40. https://doi.org/10.15663/tandc.v18i1.318 DOI: https://doi.org/10.15663/tandc.v18i1.318

Ole, F. C., & Gallos, M. R. (2023). Impact of formative assessment based on feedback loop model on high school students’ conceptual understanding and engagement with physics. Journal of Turkish Science Education, 20(2), 333-355. https://doi.org/10.36 DOI: https://doi.org/10.36681/tused.2023.019

Putri, R. (2015). Penggunaan hypothetical learning trajectory (HLT) pada materi elastisitas untuk mengetahui lintasan belajar siswa kelas X di SMA Negeri 1 Indralaya Utara. Jurnal Inovasi dan Pembelajaran Fisika, 2(1), 88–98.

Suparno, P. (2013). Miskonsepsi & perubahan konsep dalam pendidikan fisika. Gramedia Widiasarana.

Pietarinen, T., Palonen, T., & Vauras, M. (2021). Guidance in computer-supported collaborative inquiry learning: Capturing aspects of affect and teacher support in science classrooms. International Journal of Computer-Supported Collaborative Learning, 16(2), 261–287. https://doi.org/10.1007/s11412-021-09347-5 DOI: https://doi.org/10.1007/s11412-021-09347-5

Pratiwi, S. N., Cari, C., Aminah, N. S., & Affandy, H. (2019). Problem-based learning with argumentation skills to improve students’ concept understanding. Journal of Physics: Conference Series, 1155(1), 1-7. https://doi.org/10.1088/1742-6596/1155/1/012065 DOI: https://doi.org/10.1088/1742-6596/1155/1/012065

Radovanović, J., & Sliško, J. (2013). Applying a predict–observe–explain sequence in teaching of buoyant force. Physics Education, 48(1), 28–34. https://doi.org/10.1088/0031-9120/48/1/28 DOI: https://doi.org/10.1088/0031-9120/48/1/28

Rahmawati, I. D., Suparmi, & Sunarno, W. (2018). Students' concept understanding of fluid static based on the types of teaching. Journal of Physics: Conference Series, 983(1), 1-6. https://doi.org/10.1088/1742-6596/983/1/012029 DOI: https://doi.org/10.1088/1742-6596/983/1/012029

Ramirez, H. J. M. (2021). Facilitating computer-supported collaborative learning with question-asking scripting activity and its effects on students’ conceptual understanding and critical thinking in science. International Journal of Innovation in Science and Mathematics Education, 29(1). 31-45. https://doi.org/10.30722/IJISME.29.01.003 DOI: https://doi.org/10.30722/IJISME.29.01.003

Kempa, R. F. (1991). Students’ learning difficulties in science: Causes and possible remedies. Enseñanza de Las Ciencias, 9(2), 119–128. DOI: https://doi.org/10.5565/rev/ensciencias.4702

Marzano, R. J. (1998). A theory-based meta-analysis of research on instruction (Vol. 10). Mid-continent Regional Educational Laboratory.

Rutten, N., Van Joolingen, W. R., & Van Der Veen, J. T. (2016). Investigating an intervention to support computer simulation use in whole-class teaching. Learning: Research and Practice, 2(1), 27–43. https://doi.org/10.1080/23735082.2016.1140222 DOI: https://doi.org/10.1080/23735082.2016.1140222

Said, I., Hamzah, B., Kade, A., Ratman, R., & Ningsih, P. (2021). Student’s learning outcomes through the application of guided inquiry learning model based on scientific approach in fundamental chemical laws. Journal of Physics: Conference Series, 1832(1), 1-6. https://doi.org/10.1088/1742-6596/1832/1/012058 DOI: https://doi.org/10.1088/1742-6596/1832/1/012058

Santosa, R. H. (2014). Pengaruh metode inkuiri terhadap ketercapaian kompetensi dasar, rasa ingin tahu, dan kemampuan penalaran matematis. Pythagoras: Jurnal Pendidikan Matematika, 9(2), 196–204. DOI: https://doi.org/10.21831/pg.v9i2.9080

Saputra, O., Setiawan, A., & Rusdiana, D. (2019). Identification of student misconception about static fluid. Journal of Physics: Conference Series, 1157(3), 1-6. https://doi.org/10.1088/1742-6596/1157/3/032069 DOI: https://doi.org/10.1088/1742-6596/1157/3/032069

Shanmugavelu, G., Parasuraman, B., Ariffin, K., Kannan, B., & Vadivelu, M. (2020). Inquiry method in the teaching and learning process. Shanlax International Journal of Education, 8(3), 6–9. https://doi.org/10.34293/education.v8i3.2396 DOI: https://doi.org/10.34293/education.v8i3.2396

Soeharto, S. (2021). Development of A Diagnostic Assessment Test to Evaluate Science Misconceptions in Terms of School Grades: A Rasch Measurement Approach. Journal of Turkish Science Education, 18(3), 351–370. https://doi.org/10.36681/tused.2021.78 DOI: https://doi.org/10.36681/tused.2021.78

Susman, K., Pavlin, J., & Čepič, M. (2008). It seems easy to float, but is it really? : a teaching unit for buoyancy [Published Scientific Conference Contribution]. 1–11. Repository of the University of Ljubljana. http://lsg.ucy.ac.cy/girep2008/papers/IT%20SEEMS%20EASY%20TO%20FLOAT,%20BUT%20IS%20

Syaiful, S. (2017). Konsep dan makna pembelajaran: Untuk membantu memecahkan problematika belajar dan mengajar (13th ed.). Alfabeta.

Tekin, G., & Muştu, Ö. E. (2021). The effect of research-inquiry based activities on the academic achievement, attitudes, and scientific process skills of students in the seventh-year science course. The European Educational Researcher, 4(1), 109–131. https://doi.org/10.31757/euer.416 DOI: https://doi.org/10.31757/euer.416

Tuada, R. N., Rahmadhani, A., Faizal, F., & Hutapea, B. (2023). Analisis pemahaman konsep calon guru fisika pada materi tekanan hidrostatis. J-HEST Journal of Health Education Economics Science and Technology, 5(2), 324–328. https://doi.org/10.36339/jhest.v5i2.117 DOI: https://doi.org/10.36339/jhest.v5i2.117

Urhahne, D., Schanze, S., Bell, T., Mansfield, A., & Holmes, J. (2010). Role of the teacher in computer-supported collaborative inquiry learning. International Journal of Science Education, 32(2), 221–243. https://doi.org/10.1080/09500690802516967 DOI: https://doi.org/10.1080/09500690802516967

Verawahyuni, H. (2022). Implementation of the guided inquiry model learning to reduce misconceptions of static fluid materials students of State Junior High School 19 Samarinda Semester II, 2019/2020 academic year. Jurnal Penelitian Pendidikan IPA, 7(1), 1–9. https://doi.org/10.26740/jppipa.v7n1.p1-9 DOI: https://doi.org/10.26740/jppipa.v7n1.p1-9

Wardani, T. B., Widodo, A., & Winarno, N. (2017). Using inquiry-based laboratory activities in lights and optics topic to improve students’ conceptual understanding. Journal of Physics: Conference Series, 895(1), 1-6. https://doi.org/10.1088/1742-6596/895/1/012152 DOI: https://doi.org/10.1088/1742-6596/895/1/012152

Wen, C.-T., Liu, C.-C., Chang, H.-Y., Chang, C.-J., Chang, M.-H., Fan Chiang, S.-H., Yang, C.-W., & Hwang, F.-K. (2020). Students’ guided inquiry with simulation and its relation to school science achievement and scientific literacy. Computers & Education, 149(1), 1-14. https://doi.org/10.1016/j.compedu.2020.103830 DOI: https://doi.org/10.1016/j.compedu.2020.103830

Zhou, Z., Wang, H., & Li, M. (2019). Hydrostatic pressure effect on metallic glasses: A theoretical prediction. Journal of Applied Physics, 126(14), 1-10. https://doi.org/10.1063/1.5118221 DOI: https://doi.org/10.1063/1.5118221

Downloads

Published

27.11.2025

How to Cite

Markos Siahaan, S., Ismet, I., Soeharto, S., & Patriot, E. A. (2025). Supporting eighth-grade pupils’ understanding of hydrostatic pressure with inquiry-based activities. Journal of Turkish Science Education, 22(4), 677-702. https://doi.org/10.36681/tused.2025.034

Similar Articles

1-10 of 564

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)